Rigid Flex PCB Manufacturing: A Process Overview

1. What is a Rigid Flex PCB?

A rigid flex PCB combines stiff board parts with flexible sections in one structure. This design removes connectors, which cause 82% of connection failures (IPC-2223 data). These rigid flex printed circuit boards excel in:

  • High-density packaging: 3D configurations reduce space by 60% vs. traditional PCBs

  • Extreme environments: Operate in harsh environments (-65°C to 260°C)

  • Dynamic flexing: Endure >500,000 bends in wearable flexible PCBs


2. Material Selection & Preparation

2.1 Core Materials Comparison

MaterialTypeThicknessCTE (ppm/°C)Key Use
Polyimide FilmFlex12-125μm15Aerospace rigid flex designs
FR4Rigid0.2-3.2mm13Rigid board base layers
RA CopperConductive9-70μm17Flexible sections requiring bends

Critical Notes:

  • High volume production favors PET films for cost, but limits dynamic flex cycles

  • Copper layers in flex PCB design require rolled annealed (RA) foil for bend endurance


3. Rigid Flex PCB Manufacturing Process

rigid flex manufacturing process

Rigid flex manufacturing process

 

3.1 Layer Stackup Design

Advanced rigid flex circuits use asymmetric stacks:

  • Flexible and rigid zones: 2-6 polyimide layers sandwiched between FR4

  • Copper layers transition: Tapered copper at rigid-flex junctions prevents cracking

3.2 Imaging & Etching

  • Laser Direct Imaging (LDI): 25μm traces for flexible printed circuit boards

  • Plasma Etching: Ar/O₂ gas achieves 45° sidewall angles in flex material

3.3 Multilayer Lamination

StepParametersPurpose
Flex Prepreg Bonding180°C @ 300psiAdhere the polyimide film to the cores
Rigid Layer Fusion220°C @ 500psiBond FR4 to flexible sections

*CTE mismatch control: Δ<2ppm/°C between adjacent layers*

3.4 Drilling & Plating

  • Laser Drilling: <50μm microvias in rigid-flex PCB transition zones

  • Electroless Copper: 18-25μm deposition for reliable copper layers

3.5 Surface Finishing

FinishCostBend CyclesApplications
ENIG$$$200,000+Military flex rigid pcb
OSP$50,000Consumer flexible pcb

4. Quality Control for Rigid Flex PCB Manufacturers

4.1 Electrical Testing

  • Impedance control: ±10% tolerance for high-speed rigid flex circuits

  • 4-wire Kelvin testing: Detect <1mΩ resistance fluctuations

4.2 Mechanical Validation

  • Dynamic Flex Test: 6x board radius bends per IPC-2223C

  • Thermal shock: 100 cycles (-55°C↔125°C) for harsh environment validation

4.3 Certification Standards

  • Rigid flex PCB manufacturers must comply with:

    • UL 94V-0 flame rating

    • IPC-6013D Class 3

    • ISO 13485 for medical flex and rigid flex devices

Reference: PCB Testing: 8 Essential Methods for Quality Assurance (2025 Update)


5. Industry Innovations & Challenges

5.1 Technical Barriers

  • Z-axis expansion: 15ppm (PI) vs 13ppm (FR4) causes warpage in rigid flex pcb manufacturing process

  • Flex PCB design complexity: 8+ layer counts require 3D modeling tools

5.2 Cutting-Edge Solutions

  • Additive Manufacturing: Aerosol-jet printed copper layers on 3D surfaces

  • Adhesive-less FCCL: Eliminates 0.3mm glue layers in flexible and rigid interfaces


6. Choosing a Rigid Flex PCB Manufacturer

Key Selection Criteria:

  • High volume capability: >10,000 panels/month with ≤0.5% defect rate

  • Flex rigid PCB expertise: Minimum 5 years in mil-aero applications

  • Material mastery: Certified polyimide film suppliers (DuPont®/Panasonic®)

Pro Tip: Request 3D CT scans for rigid flex printed circuit boards with >16 layers.

Conclusion

Rigid Flexible PCB manufacturing, though complex, shares many conceptual similarities with rigid PCB production. By understanding each step, from stacking layers to final lamination and routing, engineers can create high-quality flexible circuits. You can tailor these circuits for many different applications. As technology improves, rigid-flexible PCBs will keep playing an important role in creating new electronic products.